

FEATURES

- Low Supply Voltage Range: 1.8 V to 3.6 V
- Ultralow-Power Consumption:
 - Active Mode: 160 μA at 1 MHz, 2.2 V
 - Standby Mode: 0.9 μA
 - Off Mode (RAM Retention) : 0.1 µA
- Contains Frequency-Hopping Firmware for Dolphin Reference Design
- Firmware Resides in ROM-Based Program Memory and is Fixed
- Simple UART Interface to an External Host/System Microcontroller
- Pre-Defined Protocol for Communication with an External Host/System Microcontroller

- Five Power-Saving Modes
- Wake-Up From Standby Mode in less than 6 µs
- 16-Bit RISC Architecture, 125-ns Instruction Cycle Time
- Serial Communication Interface (USART), Software Selects Asynchronous UART or Synchronous SPI
- Available in 64-Pin Quad Flat Pack (QFP)
- For Complete Dolphin Product Description, See the Dolphin Frequency Hopping Spread Spectrum Evaluation Kit Hardware and Software User's Guide (SLLU090)

DESCRIPTION

The DBB03 is a baseband ASIC for the "Dolphin" reference design. The firmware for the Dolphin reference design resides in the ROM-based program memory of the DBB03, and thus can be readily interfaced with a TRF6903 single-chip RF Transceiver to generate a frequency hopping wireless UART "Dolphin" reference design chipset. This is illustrated in Figure 1.

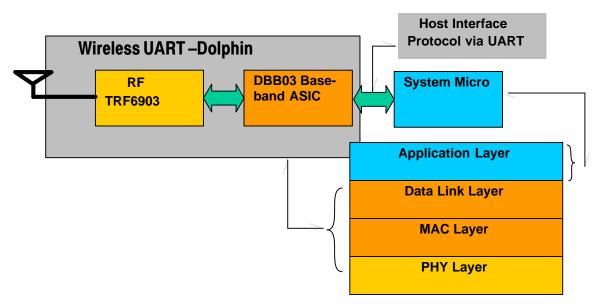
The DBB03 baseband ASIC in addition to being a RF baseband processor is also responsible for communications with an external host/system micrcontroller. In a typical end user application, the Dolphin chipset will be connected up to an external host/system microcontroller that will send configuration messages, RF transmission messages into the Dolphin chipset, or receive status, RF messages received from the Dolphin chipset.

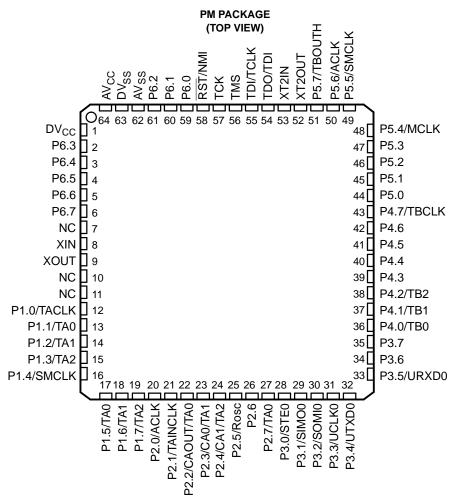
Any catalog low-cost host/system microcontroller can be interfaced to the Dolphin chipset as long as the Dolphin host interface protocol for communication is adhered to. (See Application Note Dolphin - Frequency Hopping Spread Spectrum Chipset Host Interface Protocol TI Literature SWRA043) Texas Instruments recommends its ultra-low power MSP430 series of microcontrollers to interface with Dolphin.

The interface between the DBB03 baseband ASIC and an external host/system microcontroller is a simple UART consisting of RX and TX data lines. (See Application Note *Interfacing Dolphin to an External System Microcontroller*, TI Literature SWRA045).

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

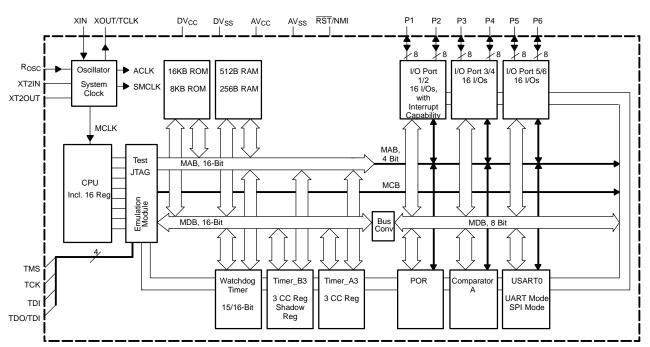
SWRS027B-DECEMBER 2004-REVISED MARCH 2005




Figure 1. DBB03 - Baseband ASIC for the Dolphin Chipset

The Wireless UART Dolphin chipset is a true Data-In/RF-out and RF-in/Data-out solution with all aspects of data management and frequency hopping implemented in firmware residing on the DBB03. As illustrated in Figure 1, the DBB03 baseband ASIC contains the complete firmware for Dolphin (PHYsical, MAC and the Data Link layer), while the application layer protocol is handled by the external Host/System Microcontroller.

AVAILABLE OPTIONS


T _A	PACKAGE	ORDER NUMBER		
-40°C to 85°C	Plastic 64-pin QFP (PM)	DBB03 IPM		

NC – No internal connection

SWRS027B-DECEMBER 2004-REVISED MARCH 2005

FUNCTIONAL BLOCK DIAGRAMS: DBB03

DEVICE INFORMATION

TERMINAL FUNCTIONS

TERMINAL							
NAME	NO.	I/O	DESCRIPTION				
AV _{CC}	64		Supply voltage, positive terminal. AV _{CC} and DV _{CC} are internally connected together.				
AV _{SS}	64		Supply voltage, negative terminal. AV _{SS} and DV _{SS} are internally connected together.				
DV _{CC}	1		Supply voltage, positive terminal. AV _{CC} and DV _{CC} are internally connected together.				
DV _{SS}	63		Supply voltage, negative terminal. AV_{SS} and DV_{SS} are internally connected together.				
P1.0/TACLK	12	I/O	General-purpose digital I/O pin/Timer_A, clock signal TACLK input				
P1.1/TA0	13	I/O	General-purpose digital I/O pin/Timer_A, capture: CCI0A input, compare: Out0 output				
P1.2/TA1	14	I/O	General-purpose digital I/O pin/Timer_A, capture: CCI1A input, compare: Out1 output				
P1.3/TA2	15	I/O	General-purpose digital I/O pin/Timer_A, capture: CCI2A input, compare: Out2 output				
P1.4/SMCLK	16	I/O	General-purpose digital I/O pin/SMCLK signal output				
P1.5/TA0	17	I/O	General-purpose digital I/O pin/Timer_A, compare: Out0 output				
P1.6/TA1	18	I/O	General-purpose digital I/O pin/Timer_A, compare: Out1 output				
P1.7/TA2	19	I/O	General-purpose digital I/O pin/Timer_A, compare: Out2 output				
P2.0/ACLK	20	I/O	General-purpose digital I/O pin/ACLK output				
P2.1/TAINCL K	21	I/O	General-purpose digital I/O pin/Timer_A, clock signal at INCLK				
P2.2/CAOUT/ TA0	22	I/O	General-purpose digital I/O pin/Timer_A, capture: CCI0B input/Comparator_A output				
P2.3/CA0/TA 1	23	I/O	General-purpose digital I/O pin/Timer_A, compare: Out1 output/Comparator_A input				
P2.4/CA1/TA 2	24	I/O	General-purpose digital I/O pin/Timer_A, compare: Out2 output/Comparator_A input				
P2.5/R _{OSC}	25	I/O	General-purpose digital I/O pin/input for external resistor defining the DCO nominal frequency				
P2.6	26	I/O	General-purpose digital I/O pin				

DEVICE INFORMATION (continued)

TERMINAL FUNCTIONS (continued)

TERMINAL NAME NO.			DECODIDATION			
		I/O	DESCRIPTION			
P2.7/TA0	27	I/O	General-purpose digital I/O pin/Timer_A, compare: Out0 output			
P3.0/STE0	28	I/O	General-purpose digital I/O pin/slave transmit enable - USART0/SPI mode			
P3.1/SIMO0	29	I/O	General-purpose digital I/O pin/slave in/master out of USART0/SPI mode			
P3.2/SOMI0	30	I/O	General-purpose digital I/O pin/slave out/master in of USART0/SPI mode			
P3.3/UCLK0	31	I/O	General-purpose digital I/O pin/external clock input - USART0/UART or SPI mode, clock output - USART0/SPI mode			
P3.4/UTXD0	32	I/O	General-purpose digital I/O pin/transmit data out - USART0/UART mode			
P3.5/URXD0	33	I/O	General-purpose digital I/O pin/receive data in - USART0/UART mode			
P3.6	34	I/O	General-purpose digital I/O pin			
P3.7	35	I/O	General-purpose digital I/O pin			
P4.0/TB0	36	I/O	General-purpose digital I/O pin/Timer_B, capture: CCI0A/B input, compare: Out0 output			
P4.1/TB1	37	I/O	General-purpose digital I/O pin/Timer_B, capture: CCI1A/B input, compare: Out1 output			
P4.2/TB2	38	I/O	General-purpose digital I/O pin/Timer_B, capture: CCI2A/B input, compare: Out2 output			
P4.3	39	I/O	General-purpose digital I/O pin			
P4.4	40	I/O	General-purpose digital I/O pin			
P4.5	41	I/O	General-purpose digital I/O pin			
P4.6	42	I/O	General-purpose digital I/O pin			
P4.7/TBCLK	43	I/O	General-purpose digital I/O pin/Timer_B, clock signal TBCLK input			
P5.0	44	I/O	General-purpose digital I/O pin			
P5.1	45	I/O	General-purpose digital I/O pin			
P5.2	46	I/O	General-purpose digital I/O pin			
P5.3	47	I/O	General-purpose digital I/O pin			
P5.4/MCLK	48	I/O	General-purpose digital I/O pin/main system clock MCLK output			
P5.5/SMCLK	49	I/O	General-purpose digital I/O pin/submain system clock SMCLK output			
P5.6/ACLK	50	I/O	General-purpose digital I/O pin/auxiliary clock ACLK output			
P5.7/TBOUT H	51	I/O	General-purpose digital I/O pin/switch all PWM digital output ports to high impedance - Timer_B7 TB0 to TB2			
P6.0	59	I/O	General-purpose digital I/O pin			
P6.1	60	I/O	General-purpose digital I/O pin			
P6.2	61	I/O	General-purpose digital I/O pin			
P6.3	2	I/O	General-purpose digital I/O pin			
P6.4	3	I/O	General-purpose digital I/O pin			
P6.5	4	I/O	General-purpose digital I/O pin			
P6.6	5	I/O	General-purpose digital I/O pin			
P6.7	6	I/O	General-purpose digital I/O pin			
RST/NMI	58	I	Reset input, nonmaskable interrupt input port			
тск	57	I	Test clock. TCK is the clock input port for device programming test.			
TDI/TCLK	55	I	Test data input or test clock input. TDI is used as a data input port. The device protection fuse is connected to TDI.			
TDO/TDI	54	I/O	Test data output port. TDO/TDI data output			
TMS	56	I	Test mode select. TMS is used as an input port for device test.			
NC	7, 10, 11		No internal connection			
XIN	8	I	Input port for crystal oscillator XT1. Standard or watch crystals can be connected.			
XOUT	9	0	Output terminal of crystal oscillator XT1			
XT2IN	53	I	Input port for crystal oscillator XT2. Only standard crystals can be connected.			
XT2OUT	52	0	Output terminal of crystal oscillator XT2			

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	e Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
DBB03IPM	NRND	LQFP	PM	64		TBD	Call TI	Call TI	-40 to 85	DBB03	
DBB03IPMR	NRND	LQFP	PM	64		TBD	Call TI	Call TI	-40 to 85		

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

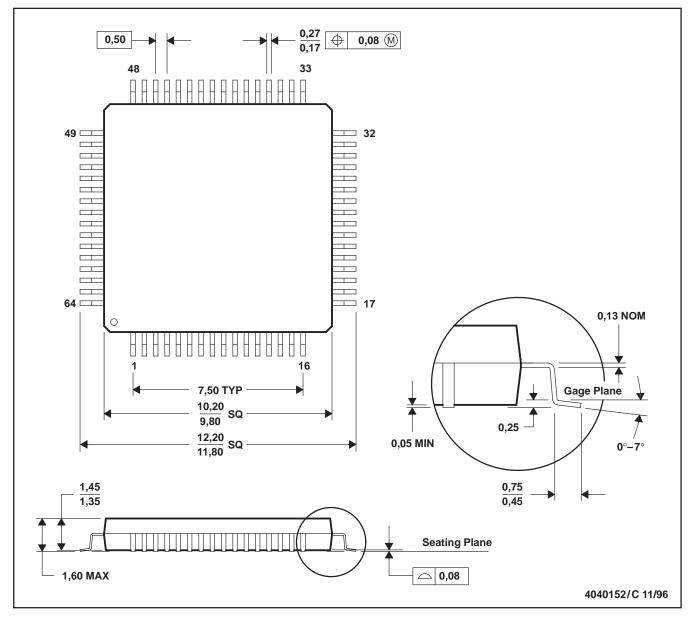
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

MECHANICAL DATA

MTQF008A - JANUARY 1995 - REVISED DECEMBER 1996

PM (S-PQFP-G64)

PLASTIC QUAD FLATPACK

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-026
- D. May also be thermally enhanced plastic with leads connected to the die pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated